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ABSTRACT
An entity can be referred by multiple name aliases on the
web. Extracting aliases of an entity is important for vari-
ous tasks in the Semantic Web such as identification of re-
lations among entities, automatic metadata extraction and
entity disambiguation. To extract relations among entities
properly, one must first identify those entities. Aliases of
an entity are useful as metadata for that entity and can be
used to identify an entity uniquely on the web. We propose
a novel approach to find aliases of a given name using au-
tomatically extracted lexical patterns. We exploit a set of
known names and their aliases as training data and extract
lexical patterns that convey information related to aliases
of names from text snippets returned by a web search en-
gine. The patterns are then used to find candidate aliases
of a given name. We use anchor texts and hyperlinks on
the web to design a word co-occurrence model and use the
model to define various ranking scores to evaluate the associ-
ation between a name and a candidate alias. Moreover, the
ranking scores are integrated with page counts-based associ-
ation measures using support vector machines to leverage a
robust alias detection measure. The proposed method out-
performs numerous baselines and previous works related to
alias extraction on a dataset of personal names, achieving a
statistically significant mean reciprocal rank of 0.6718. Ex-
periments carried out using a dataset of location names and
Japanese personal names suggest the possibility of extending
the proposed method to extract aliases for different named
entity types and for other languages. Moreover, the aliases
extracted using the proposed method improve recall by 20%
in a relation-detection task.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms
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1. INTRODUCTION
Precisely identifying entities in web documents is neces-

sary for various tasks in the Semantic Web such as relation
extraction [12, 34], metadata extraction [24, 17, 41], search
and integration of data [2, 23]. Nevertheless, identification
of entities on the web is difficult for two fundamental rea-
sons: first, different entities can share the same name (lexical
ambiguity); secondly, a single entity can be designated by
multiple names (referential ambiguity). As an example of
lexical ambiguity the name Jim Clark is illustrative. Aside
from the two most popular namesakes, the formula-one rac-
ing champion and the founder of Netscape, at least 10 dif-
ferent people are listed among the top 100 results returned
by Google for the name. On the other hand, referential am-
biguity occurs because people use different names to refer
to the same entity on the web. For example, the American
movie star Will Smith is often called the the Fresh Prince
and Japanese major league baseball player Hideki Matsui is
called Godzilla in web contents. Although lexical ambiguity,
particularly ambiguity related to personal names, has been
explored extensively in the previous studies of name disam-
biguation [29, 19, 7, 1, 36], the problem of referential ambi-
guity of entities on the web has received much less attention.
In this paper, we specifically examine on the problem of au-
tomatically extracting the various references on the web to
a particular entity. In contrast to the real name of an entity,
we use the term alias to describe different references made
to that same entity.

Identifying aliases of a name is important for extracting
relations among entities. For example, in social network
extraction from the web [31, 33] the goal is to identify re-
lations between people and represent them as a network in
which the nodes denote individuals and the edges represent
the strength of the relation between two persons. Existing
social network extraction algorithms compute the strength
of relationship between two persons whose real names are A
and B, using the web hits returned by a search engine for
the conjunctive query, “A” AND “B”. However, both per-
sons A and B might also appear in their alias names in web
contents. Consequently, by expanding the conjunctive query
using aliases for the names, a social network extraction algo-
rithm can accurately compute the strength of a relationship
between two persons.

The Semantic Web is intended to solve the entity disam-
biguation problem by providing a mechanism to add seman-
tic metadata for entities. However, an issue that the Se-



mantic Web currently faces is that insufficient semantically
annotated web contents are available. Automatic extraction
of metadata [17, 24, 41] can accelerate the process of seman-
tic annotation. For named entities, automatically extracted
aliases can serve as a useful source of metadata, thereby
providing a means to disambiguate the entity.

Searching for information about people on the web is an
extremely common activity of internet users. Around 30% of
search engine queries include personal names [3, 22]. How-
ever, retrieving information about a person merely using his
or her real names is insufficient when that person has nick-
names. Particularly with keyword-based search engines, we
will only retrieve pages which use the real name to refer to
the person about whom we are interested in finding infor-
mation. In such cases, automatically extracted aliases of the
name are useful to expand a query in a web search, thereby
improving recall.

Along with the recent rapid growth of social media such
as blogs and social network services (SNSs), extracting and
classifying sentiment on the web has received much atten-
tion [40]. Typically, a sentiment analysis system classifies
a text as positive or negative according to the sentiment
expressed in it. However, when people express their views
about a particular entity, they do so by referring to the
entity not only using the real name but also using various
aliases of the name. By aggregating texts that use various
aliases to refer to an entity, a sentiment analysis system can
produce an informed judgment related to the sentiment.

For an entity e, we define the set A of its aliases to be the
set of all words or multi-word expressions that are used to
refer to e on the web. For example, Godzilla is a one-word
alias for Hideki Matsui, whereas the alias the Fresh Prince
contains three words and refers to Will Smith. Various types
of terms are used as aliases on the web. For instance, in the
case of an actor, the name of a role or the title of a drama
(or a movie) can later become an alias for the person (e.g.,
Fresh Prince, Knight Rider). Titles or professions such as
president, doctor, professor, etc. are also frequently used as
aliases. Variants or abbreviations of names such as Bill for
William and acronyms such as J.F.K. for John Fitzgerald
Kennedy are also types of name aliases that are observed
frequently on the web.

In this paper, we propose a fully automatic method to ex-
tract aliases of a given name. The proposed method includes
two steps: given a name, extract all potential candidate
aliases from the web; then rank the extracted candidates
according to the likelihood that they are aliases of the given
name. Our main contributions are the following:

• We propose a lexical pattern-based approach to ex-
tract aliases for given name using snippets returned
by a web search engine. We propose an algorithm to
automatically generate lexical patterns using a set of
real-world name-alias data.

• To select the best aliases among the extracted candi-
dates, we propose numerous ranking scores based upon
two approaches: a word co-occurrence graph using an-
chor texts, and page counts returned by a web search
engine. Moreover, using real world name alias data,
we train a ranking support vector machine to learn
the optimal combination of individual ranking scores
to leverage a robust alias extraction method.

The remainder of the paper is organized as follows. In

section 2 we review previous studies of alias extraction and
related problems. The proposed alias extraction method
is explained in section 3 followed by a description of rank-
ing approaches in section 4. In section 5 we compare the
proposed method against numerous baselines and previous
studies of alias extraction on real world name-alias data.
Moreover, we use the extracted aliases in a relation detec-
tion task. Finally, we discuss the results and conclude the
paper.

2. RELATED WORK
Alias identification is closely related to the problem of

cross-document coreference resolution [5, 6, 21]. Given two
mentions of a name from different documents, the objec-
tive in cross-document coreference resolution is to determine
whether they refer to the same entity. Bagga et al. [5] pro-
posed a cross-document coreference resolution algorithm by
first performing within-document coreference resolution for
each individual document to extract coreference chains, and
then clustering the coreference chains under a vector space
model to identify all mentions of a name in the document
set. However, the vastly numerous documents on the web
render it impractical to perform within-document corefer-
ence resolution to each document separately and then cluster
the documents to find aliases. Moreover, the noise and nu-
merous writing styles in web documents make it difficult to
perform within-document coreference resolution with high
accuracy.

In personal name disambiguation [29, 19, 7, 1, 36], the
goal is to disambiguate various people that share the same
name (namesakes). Given an ambiguous name, most name
disambiguation algorithms have modeled the problem as one
of document clustering, in which all documents that dis-
cuss a particular individual of the given ambiguous name are
grouped into a single cluster. The web people search task
(WEPS) at SemEval 2007 1 provided a dataset and evalu-
ated various name disambiguation systems. However, the
name disambiguation problem differs fundamentally from
that of alias extraction because, in name disambiguation
the objective is to identify the different entities that are re-
ferred by the same ambiguous name; in alias extraction, we
are interested in extracting all references to a single entity
from the web.

Approximate string matching algorithms have been used
for extracting variants or abbreviations of personal names
(e.g. matching Will Smith with the first name initialized
variant W. Smith) [9, 10, 20]. Rules in the form of regu-
lar expressions and edit-distance-based methods have been
used to compare names. Bilenko and Mooney [9] proposed
a method to learn a string similarity measure to detect du-
plicates in bibliography databases. However, an inherent
limitation of such string matching approaches is that they
cannot identify aliases which share no words or letters with
the real name. For example, approximate string matching
methods would not identify Fresh Prince as an alias for Will
Smith.

Hokama and Kitagawa [27] propose an alias extraction
method that is specific to the Japanese language. For a
given name p, they search for the query * koto p and ex-
tract the context that matches the asterisk. The Japanese
word koto, roughly corresponds to also known as in En-

1http://nlp.uned.es/weps
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Figure 1: Outline of the proposed alias extraction
method

.
glish. However, koto is a highly ambiguous word in Japanese
that can also mean incident, thing, matter, experience and
task. As reported in their paper, many noisy and incorrect
aliases are extracted using this pattern, which requires var-
ious post-processing heuristics that are specific to Japanese
language to filter-out the incorrect aliases. Moreover, man-
ually crafted patterns do not cover various ways that convey
information about name aliases. In contrast, we propose a
method to leverage such lexical patterns automatically using
a training dataset of names and aliases.

3. METHOD

3.1 Outline
The proposed method is outlined in Fig.1 and comprises

two main components: pattern extraction, and alias extrac-
tion and ranking. Using a seed list of name-alias pairs, we
first extract lexical patterns that are frequently used to con-
vey information related to aliases on the web. We query a
web search engine for each name-alias pair and extract lexi-
cal patterns from the snippets returned by the search engine.
Subsequently, to find candidate aliases of a given name, we
use the extracted patterns and retrieve snippets that contain
the name in the pattern. We then select potential candidates
from the snippets and use various ranking scores to evalu-
ate the likelihood of a candidate being an alias of the given
name. To this end, we define numerous ranking scores using
anchor texts and web page counts, as described in section 4.
However, it is not obvious how to integrate these numerous
ranking scores to identify aliases for real world data. In sec-
tion 4.3, using a dataset of real world names and aliases, we
integrate the various ranking scores using ranking support
vector machines [28] to leverage a robust alias extraction
method.

3.2 Extracting Lexical Patterns from Snippets
Many modern web search engines provide a brief text snip-

pet for each search result by selecting the text that appears
in the web page in the proximity of the query. Such snippets
provide valuable information related to the local context of
the query. For names and aliases, snippets convey useful
semantic clues that can be used to extract lexical patterns
that are frequently used to express aliases of a name. For
example, consider the snippet returned by Google2 for the
query “Will Smith * The Fresh Prince”.

2www.google.com

...Rock the House, the duo’s debut album of 1987,
demonstrated that Will Smith, aka the Fresh Prince,

was an entertaining and amusing storyteller...

Figure 2: A snippet returned for the query “Will
Smith * The Fresh Prince” by Google
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Algorithm 3.1: ExtractPatterns(S)

comment: S is a set of (NAME, ALIAS) pairs

P ← null
for each (NAME, ALIAS) ∈ S

do

8
<
:

D ← GetSnippets(“NAME ∗ ALIAS”)
for each snippet d ∈ D
do P ← P + CreatePattern(d)

return (P )

Figure 3: Given a set S of (NAME, ALIAS) in-
stances, extract lexical patterns from snippets.

Here, we use the wildcard operator * to perform a NEAR
query for the name and its alias. The operator * matches
with one or more words in a snippet. In Fig.2 the snip-
pet contains aka (i.e. also known as), which indicates the
fact that fresh prince is an alias for Will Smith. In ad-
dition to a.k.a., numerous clues exist such as nicknamed,
alias, real name is, nee, which are used on the web to repre-
sent aliases of a name. Lexico-syntactic patterns have been
used in numerous related tasks such as extracting hyper-
nyms [25] and meronyms (i.e. words in a part-whole rela-
tion) [8], measuring semantic similarity [11] and automatic
metadata extraction [17]. Previous studies of corpus-based
pattern extraction have proposed the use of part-of-speech
information and dependency structure [39]. However, such
a deep analysis is impractical considering the numerous ill-
formed sentences that must be processed on the web. More-
over, most web search engines only support lexical queries.
Consequently, in this paper, we propose a shallow pattern
extraction method to capture the various ways in which in-
formation about aliases of names is expressed on the web.

Our pattern extraction algorithm is presented in Fig.3.
Given a set S of (NAME, ALIAS) pairs, the function Ex-
tractPatterns returns a list of lexical patterns that frequently
connect names and their aliases in web-snippets. For each
(NAME, ALIAS) pair in S, the GetSnippets function down-
loads snippets from a web search engine for the query “NAME
* ALIAS”. Then, from each snippet, the CreatePattern
function extracts the sequence of words that appear be-
tween the name and the alias that we used in the query.
Results of our preliminary experiments demonstrated that
consideration of words that fall outside the name and the
alias in snippets did not improve performance. Finally, the
real name and the alias in the snippet are respectively re-
placed by two variables [NAME] and [ALIAS] to create
patterns. For example, from the snippet shown in Fig.2,
we extract the word aka that falls between the real name,
Will Smith and the aliases, the fresh prince and create the
pattern [NAME] aka [ALIAS]. We repeat the process de-
scribed above for the reversed query, “ALIAS * NAME” to
extract patterns in which the alias precedes the name (e.g.,
[ALIAS] is an alias for [NAME]).
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Algorithm 3.2: ExtractCandidates(NAME, P )

comment: P is the set of patterns

C ← null
for each pattern p ∈ P

do

8
<
:

D ← GetSnippets(“NAME p ∗ ”)
for each snippet d ∈ D
do C ← C + GetNgrams(d, NAME, p)

return (C)

Figure 4: Given a name N and a set of lexical pat-
terns P , extract potential aliases of N from snippets
.

Once a set of lexical patterns is extracted as described
in Fig.3, we use the patterns to extract candidate aliases
for a given name. Our candidate extraction algorithm is
portrayed in Fig.4. Given a name, NAME and a set, P
of lexical patterns, the function ExtractCandidates returns
a list of candidate aliases for the name. We associate the
given name with each pattern, p in the set of patterns, P
and produce queries of the form: “NAME p *”. Then the
GetSnippets function downloads a set of snippets for the
query. Finally, the GetNgrams function extracts continuous
sequences of words (n-grams) from the beginning of the part
that matches the wildcard operator *. Experimentally, we
selected up to 5-grams as candidate aliases. Moreover, we
removed candidates that contain only stop words such as
a, an, and the. For example, assuming that we retrieved
the snippet in Fig.3 for the query “Will Smith aka *”, the
procedure described above extracts the fresh and the fresh
prince as candidate aliases.

4. RANKING OF CANDIDATES
The preceding section described a lexical pattern-based

approach to extract a set of candidate aliases for a given
name. However, considering the noise in web-snippets, can-
didates might include some invalid aliases. From among
these candidates, we must identify those which are most
likely to be correct aliases of a given name. We model this
problem of alias recognition as one of ranking candidate
aliases with respect to a given name such that the candi-
dates which are most likely to be correct aliases are assigned
a higher rank. We propose various ranking scores to mea-
sure the association between a name and a candidate alias
using two approaches. First, in section 4.1 we describe an
approach based on anchor texts and hyperlink structure on
the web. Second, in section 4.2, we define numerous ranking
scores using page counts returned by a search engine.

4.1 Co-occurrence Graphs
Anchor texts pointing to a url provide useful semantic

clues related to the resource represented by the url. For
example, consider the situation illustrated in Fig.5 where a
picture of Hideki Matsui – a Japanese major league base-
ball player who plays for the New York Yankees – is linked
by various anchor texts. Some anchor texts might contain
the real name of the baseball player to point to the picture
whereas others might use aliases. Consequently, it is likely
that the remainder of the anchor texts contain information
about aliases of the name if the majority of inbound anchor
texts of a url contain a personal name. As shown in Fig.5,

Hideki Matsui

Godzilla

Matsu Hide

matsui.jpg

Figure 5: Different anchor texts pointing to a pic-
ture of Hideki Matsui. Two anchor texts use the
real name of the baseball player: Hideki Matsui and
its Japanese transliteration 松井秀喜, and two anchor
texts use aliases; Godzilla and Matsu Hide. Japanese
names are usually written with the surname first,
but are reversed for foreign readers.

Hideki MatsuiGodzilla Matsu Hide

Figure 6: Co-occurrence graph for Hideki Matsui.
Words in anchor texts that point to the same url
are connected by an edge. All words that fall inside
the dotted ellipse appear in at least one anchor text
that points to a url are also indicated by an anchor
text containing Hideki Matsui.

two anchor texts use the real name, Hideki Matsui and the
Japanese form 松井秀喜, but the others use aliases such as
Godzilla and Matsu Hide.

Anchor texts have been studied extensively in informa-
tion retrieval [4] and have been used in various tasks such as
synonym extraction [14], query translation in cross-language
information retrieval [15], and ranking and classification of
web pages [13], However, anchor texts have not been ex-
ploited fully in Semantic Web applications. We revisit an-
chor texts to measure the association between a name and
its aliases on the web.

We propose a word co-occurrence graph to represent the
association between words that appear in different anchor
texts. For each word that appears in anchor texts, we cre-
ate a node in the graph. Two words are considered as co-
occurring if two anchor texts containing those words link
to the same url. Figure 6 illustrates a fraction of the co-
occurrence graph in the proximity of Hideki Matsui, as ex-
tracted using this method from anchor texts.

Co-occurrence graphs have been implemented in various
tasks such as key word extraction [35], thesauri genera-



Table 1: Contingency table for a candidate alias x
x C − {x}

p k n− k n
V − {p} K − k N − n−K + k N − n

V K N −K N

tion [32], and query disambiguation [42]. Representing words
that appear in anchor texts as a graph enables the capture of
the complex interrelations among words. Words in inbound
anchor texts of a url contain important semantic clues re-
lated to the resource represented by the url. Such words
form a clique in the co-occurrence graph, indicating their
close connectivity. Moreover, co-occurrence graphs repre-
sent indirect relationships between words. For example, in
Fig.6 Hideki Matsui is connected to New York via Yankees.

Let V be the set of all words wi that appear in anchor
texts. The Boolean function A(ai, wi) returns true if the an-
chor text ai contains the word wi. Moreover, let the Boolean
function L(ai, ui) be true if the anchor text ai points to url
ui. Then two words wi and wj are defined as co-occurring
in a url u, if A(ai, wi) ∧ A(aj , wj) ∧ L(ai, u) ∧ L(aj , u) is
true for at least one pair of anchor texts (ai, aj). In other
words, two words are said to co-occur in a url if at least
one inbound pair of anchor texts contains the two words.
Moreover, we define the number of co-occurrences of wi and
wj as the number of different urls in which they co-occur.
It is noteworthy that this definition of co-occurrence dif-
fers from the traditional definition of co-occurrence: in our
definition, the two words that co-occur in fact appear in dif-
ferent anchor texts that are pointing to the same url. An
edge is formed between two nodes if the words represented
by those nodes co-occur. For example, in Fig.5 the anchor
texts Hideki Matsui and Godzilla link to matsui.jpg, thereby
resulting in one co-occurrence.

Formally, we define a word co-occurrence graph, G(V, E)
(V is the set of nodes and E is the set of edges), as an
undirected graph in which each word wi in vocabulary V
is represented by a node in the graph. Because one-to-one
mapping pertains between a word and a node, we use wi for
simplicity to represent both the word and the corresponding
node in the graph. An edge eij ∈ E is created between two
nodes wi and wj if they co-occur. For example, in Fig.6
the words that co-occur with Hideki Matsui fall inside the
dotted ellipse.

For a name p, let us denote the set of candidate aliases
extracted using algorithm 3.2 as C. Then, for each candidate
alias x in C, we create a contingency table like that shown
in Table 1. Therein, C − {x} is the set of all candidates
except x, and V − {p} is the set of all words except the
name p. In Table 1, k is the number of urls in which p
and x co-occur, K are those in which at least one inbound
anchor text contains the candidate x, n is the number of
urls in which at least one inbound anchor text contains p
and N is the total number of urls in the dataset. If x does
not occur in the co-occurrence graph or is not connected
directly to p, then k is defined as zero. Next, we define
various ranking scores based on Table 1. The simplest of
all ranking scores is the co-occurrence frequency (CF). We
define the co-occurrence frequency between a name p and
its candidate alias x as the number of different urls in which
x and p co-occur. In fact, this is exactly the value of k in
Table 1. The more a person’s name and a word co-occur in
different urls, the more likely it is that the word is an alias
of the name.

The co-occurrence frequency is biased toward highly fre-
quent words. A word that has a high frequency in anchor
texts can also report a high co-occurrence with the name.
For example, so-called stop words such as prepositional par-
ticles and articles appear in various anchor texts and have
a high overall frequency. The tfidf measure [37], which is
popularly used in information retrieval, is useful to normal-
ize this bias. In fact, the tfidf measure reduces the weight as-
signed to words that appear across various anchor texts. The
tfidf score of a candidate alias x and a name p, tfidf(p, x),
is computed from Table 1 as

tfidf(p, x) = k log
N

K + 1
.

We use the information in Table 1 to define popular co-
occurrence statistics: chi-squared measure (CS) [30], Log-
likelihood ratio (LLR) [18], pointwise mutual information
(PMI) [16], and hyper-geometric distributions (HG) [26].
Because of the limited availability of space, we omit the
definitions of these measures (see Manning and Schutze[30]
for a detailed discussion).

In addition to co-occurrence measures, we compute popu-
lar association measures using information in Table 1. Specif-
ically, we compute cosine, overlap and the Dice measure.
The cosine measure is widely used to compute the associ-
ation between words. The strength of association between
elements in two sets X and Y can be computed using the
cosine measure:

cosine(X, Y ) =
|X ∩ Y |p
|X|
p
|Y | . (1)

Here, |X| denotes the number of elements in set X. Letting
X to be the occurrences of candidate alias x and letting Y
signify the occurrences of name p, we define cosine(p, x) as
a measure of association between a name and a candidate
alias as

cosine(p, x) =
k√

n +
√

K
.

The overlap between the two sets X and Y is defined as

overlap(X, Y ) =
|X ∩ Y |

min(|X|, |Y |) .

Assuming that X and Y respectively represent occurrences
of name p and candidate alias x, we compute the overlap
score, overlap(p, x), as

overlap(p, x) =
k

min(n, K)
.

Smadja [38] proposes the use of the Dice coefficient to re-
trieve collocations from large textual corpora. The Dice
coefficient is defined over two sets X and Y as

Dice(X, Y ) =
2|X ∩ Y |
|X|+ |Y | . (2)

Similarly, using Table 1, the Dice coefficient, Dice(p, x), is
computed as

Dice(p, x) =
2k

n + K
.

4.1.1 Hub Weighting
A frequently observed phenomenon related to the web

is that many pages with diverse topics link to so-called



hubs such as Google, Yahoo, or MSN. Two anchor texts
might link to a hub for entirely different reasons. There-
fore, co-occurrences coming from hubs are prone to noise.
To overcome the adverse effects of a hub h when comput-
ing co-occurrence measures, we multiply the number of co-
occurrences of words linked to h by a factor α(h, p), where

α(h, p) =
t

d
. (3)

Here, t is the number of inbound anchor texts of h that
contain the real name p, and d is the total number of inbound
anchor texts of h. If many anchor texts that link to h contain
p (i.e. larger t value), then the reliability of h as a source
of information about p increases. On the other hand, if h
has many inbound links (i.e. larger d value), then it is likely
to be a noisy hub and gets discounted when multiplied by
α(<< 1). Intuitively, Eq.3 boosts hubs that are likely to
contain information related to p, while penalizing those that
contain various other topics.

4.2 Page-count-based Association Measures
In section 4.1 we defined various ranking scores using an-

chor texts. However, not all names and aliases are equally
well represented in anchor texts. Consequently, in this sec-
tion, we define word association measures that consider co-
occurrences not only in anchor texts but in the web overall.
Page counts for a conjunctive query can be regarded as an
approximation of co-occurrence of two words in the web.
We compute popular word association measures using page
counts returned by a search engine.

4.2.1 WebDice
We compute the Dice coefficient, WebDice(p, x) (Eq. 2)

between a name p and a candidate alias x using page counts
as

WebDice(p, x) =
2× hits(“p AND x”)

hits(p) + hits(x)
.

Here, hits(q) is the page counts for the query q.

4.2.2 WebPMI
We compute the pointwise mutual information, WebPMI(p, x)

using page counts as follows:

WebPMI(p, x) = log2

L× hits(“p AND x”)

hits(p)× hits(x)
.

Here, L is the number of pages indexed by the web search
engine, which we approximated as L = 1010 according to
the number of pages indexed by Google.

4.2.3 Conditional Probability
Using page counts, we compute the probability of an alias,

given a name, as

Prob(x|p) =
hits(“p AND x”)

hits(p)
.

Similarly, the probability of a name, given an alias, is

Prob(p|x) =
hits(“p AND x”)

hits(x)
.

Unlike pointwise mutual information and the Dice coeffi-
cient, conditional probability is an asymmetric measure.

4.3 Training
Using a dataset of name-alias pairs, we train a ranking

support vector machine [28] to rank candidate aliases ac-
cording to their strength of association with a name. For
each name-alias pair in our training dataset, we define three
feature types: anchor text-based co-occurrence measures,
web page-count-based association measures, and frequen-
cies of observed lexical patterns. As described in section
4.1, we define nine co-occurrence measures: CF, tfidf, CS,
LLR, PMI, HG, cosine, overlap, Dice. We compute
each of those measures with and without weighting for hubs
(section 4.1.1), resulting in 18(2 × 9) features. In addition
to the 18 features described above, we use the four asso-
ciation measures we defined using page counts: WebDice,
WebPMI, Prob(x|p) and Prob(p|x). We also use the fre-
quency of each lexical pattern as extracted using algorithm
3.1 as features for the ranking SVM. If numerous patterns
connects a name and a candidate alias in snippets, then the
confidence of the candidate alias as a correct alias of the
name increases. All features are scaled to the range of [0, 1].

Given a set of personal names and their aliases, we model
the training process as a preference learning task. For each
name, we impose a binary preference constraint between the
correct alias and each candidate. Then we consider one alias
at a time and combine it with the candidates if more than
one correct alias exists. For example, let us assume that
for a name p we selected the four candidates a1, a2, a3, a4.
Without loss of generality, let us further assume that a1

and a2 are the correct aliases of p. Consequently, we form
four partial preferences: a1 Â a3, a1 Â a4, a2 Â a3 and
a2 Â a4. Here, x Â y denotes the fact that x is preferred
to y. During training, ranking SVMs attempt to minimize
the number of discordant pairs in the training data, thereby
improving the average precision. The trained SVM model is
used to rank the set of candidates that were extracted for a
name. Finally, the highest-ranking candidate is selected as
the alias of the name.

5. EXPERIMENTS

5.1 Datasets
To train and evaluate the proposed method, we create

three name-alias datasets3: the English personal names dataset
(50 names), the English place names dataset (50 names),
and the Japanese personal names (100 names) dataset. Both
our English and Japanese personal name datasets include
people from various fields of cinema, sports, politics, sci-
ence, and mass media. The place name dataset contains
aliases for the 50 U.S. states.

To create the anchor text-based word co-occurrence graph,
we crawled English and Japanese web sites and extracted
anchor texts and urls linked by the anchor texts. A web
site might use links for purely navigational purposes, which
would convey no semantic clue. To remove navigational
links in our dataset, we prepare a list of words that are com-
monly used in navigational menus, such as top, last, next,
previous, links, etc., and remove anchor texts that contain
those words. The resultant dataset contains 24, 456, 871 an-
chor texts pointing to 8, 023, 364 urls. All urls in the dataset
contain at least two inbound anchor texts. The average

3www.miv.t.u-tokyo.ac.jp/danushka/aliasdata.zip



Table 2: Lexical patterns with the highest F -scores
as extracted using the proposed method

pattern F -score

* aka [NAME] 0.335
[NAME] aka * 0.322
[NAME] better known as * 0.310
[NAME] alias * 0.286
[NAME] also known as * 0.281

* nee [NAME] 0.225
[NAME] nickname * 0.224

* whose real name is [NAME] 0.205
[NAME] aka the * 0.187

* was born [NAME] 0.153

number of inbound anchor texts per url is 3.05 and its stan-
dard deviation is 54.02.

5.2 Pattern Selection
We used the English personal name dataset to extract lex-

ical patterns as described in algorithm 3.1. The proposed
pattern extraction algorithm extracts over 8000 unique pat-
terns that represent various ways in which names and aliases
are introduced on the web. Of those patterns, 70% occur
less than 5 times for name-alias pairs in the dataset. Given
the relatively small number of training instances (i.e. 50
instances in the English personal names dataset), it is not
possible to train with such numerous sparse patterns. From
among these patterns, we must select the patterns that are
most accurate. We use algorithm 3.1 to extract patterns and
then evaluate those patterns based on the candidates they
extract when used in algorithm 3.2. We perform 5-fold cross
validation on English personal names dataset. Precision and
recall of a pattern s is defined as follows:

Precision(s) =
No. of correct aliases retrieved by s

No. of total aliases retrieved s
,

Recall(s) =
No. of correct aliases retrieved by s

No. of total aliases in the dataset
.

Consequently, the F -score, F (s), can be computed as

F (s) =
2× Precision(s)× Recall(s)

Precision(s) + Recall(s)
.

Table 2 shows the patterns with the highest precision scores.
As shown in the table, unambiguous and highly descriptive
patterns are extracted using the proposed method. Most of
the patterns shown in Table 2 are asymmetric in the sense
that the variable [NAME] and the wildcard * appear only
in one combination among top ranked patterns. In contrast,
pattern aka is symmetric and both combinations show high
F -scores. Although not shown in Table 2 because of limited
space, the proposed method also extracted some patterns
written in other languages other than English. For example,
de son vrai nom (French for his real name) and vero nome
(Italian for vero nome) were also extracted as patterns using
the proposed method, despite the fact that we searched only
for English search results in Google.

To find the optimum number of patterns that should be
used in training, we sort the patterns by their precision and
measure the overall recall when more patterns are used to
extract candidate aliases. Here, the overall recall of using
a set of patterns is computed as the ratio of the number

Figure 7: Selecting patterns for training
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Table 3: Proposed method vs. baselines and previ-
ous studies of alias extraction

Method MRR Method MRR
SVM (Linear) 0.6718 Prob(p|x) 0.1414
SVM (Quad) 0.6495 CS(h) 0.1186
SVM (RBF) 0.6089 CF 0.0839
Hokama et al. [27] 0.6314 cosine 0.0761
tfidf(h) 0.3957 tfidf 0.0757
WebDice 0.3896 Dice 0.0751
LLR(h) 0.3879 overlap(h) 0.0750
cosine(h) 0.3701 PMI(h) 0.0624
CF(h) 0.3677 LLR 0.0604
HG(h) 0.3297 HG 0.0399
Dice(h) 0.2905 CS 0.0079
Prob(x|p) 0.2142 PMI 0.0072
WebPMI 0.1416 overlap 0.0056

of aliases extracted using all the patterns in the set to the
total number of correct aliases in the dataset. Experimen-
tal results are shown in Fig.7. It is apparent in Fig.7 that
overall recall is rapidly enhanced by a greater number of
patterns. However, low-precision patterns do not increase
recall to a great degree. Consequently, recall settles to a
maximum value of 0.75 at 25 patterns. For the remainder
of the experiments in this paper, we used the top ranked 25
patterns as features for training.

5.3 Accuracy of Alias Extraction
In Table 3, we compare the proposed SVM-based method

against various individual ranking scores (baselines) and pre-
vious studies of alias extraction (Hokama and Kitagawa. [27])
on Japanese personal names dataset. We used linear, poly-
nomial (quadratic), and radial basis functions (RBF) kernels
for ranking SVM. We use mean reciprocal rank (MRR) [4] to
evaluate the various approaches. If a method ranks the cor-
rect aliases of a name on top, then it receives a higher MRR
value. As shown in Table 3, the best results are obtained
by the proposed method with linear kernels (SVM(Linear)).
Both ANOVA and Tukey HSD tests confirm that the im-
provement of SVM(Linear) is statistically significant (p <
0.05). A drop of MRR occurs with more complex kernels,
which is attributable to over-fitting. Hokama and Kita-
gawa’s [27] method which uses manually created patterns,



Table 4: Overall performance
Dataset MRR Average Precision
English Personal Names 0.6150 0.6865
English Place Names 0.8159 0.7819
Japanese Personal Names 0.6718 0.6646

can only extract Japanese name aliases. Their method re-
ports an MRR value of 0.6314 on our Japanese personal
names dataset. In Table 3 we denote the hub-weighted ver-
sions of anchor text-based co-occurrence measures by (h).
Among the numerous individual ranking scores used as fea-
tures for training, the best results are reported by the hub-
weighted tfidf score (tfidf(h)). It is noteworthy that, for an-
chor text-based ranking scores, the hub-weighted version al-
ways outperforms the non-hub-weighted counterpart, which
justifies the hub-weighting method proposed in section 4.1.1.
Among the four page-count-based ranking scores, WebDice
reports the highest MRR. It is comparable to the best an-
chor text-based ranking score, tfidf(h). Between the two
conditional probabilities, conditioning on the real name (i.e.
Prob(x|p)) gives slightly better performance. This result
implies that we have a better chance in identifying an entity
given its real name than an alias.

We evaluate the proposed method using three types of
alias data: personal names in English, place (location) names
in English and personal names in Japanese using the mean
reciprocal rank and average precision [4]. Different from
the mean reciprocal rank, which focuses only on rank, av-
erage precision incorporates consideration of both precision
at each rank and the total number of correct aliases in the
dataset. Both MRR and average precision have been used
in rank evaluation tasks such as evaluating the results re-
turned by a search engine or a question-answering (QA)
system. With each dataset we performed a 5-fold cross val-
idation. As shown in Table 4, the proposed method reports
high scores for both MRR and average precision on all three
datasets. Best results are achieved for the place name alias
extraction task.

Table 5 presents aliases extracted for some entities in-
cluded in our datasets. The gold standard is the aliases
assigned by humans for the named entities in the datasets.
Overall, in Table 5 the proposed method extracts most aliases
assigned in the gold standard. It is interesting to note that,
for actors the extracted aliases include their roles in movies
or television dramas (e.g. Michael Knight for David Has-
selhoff and Susan Mayer for Teri Hatcher). We extract n-
grams from snippets as candidate aliases. Therefore, some
of the extracted aliases do overlap (e.g. aliases for Texas).
This might be prevented by using a post-processing heuristic
such as ignoring aliases that are nested within an alias that
has a higher rank. However, to keep the proposed method as
simple as possible, we use no such post-processing heuristics.

5.4 Relation Detection
We evaluate the effect of aliases on a real-world relation

detection task as follows. First, we manually classified 50
people in the English personal names dataset, depending on
their field of expertise, into four categories: music, politics,
movies, and sports. Following earlier research on web-based
social network extraction [31, 33], we measured the associ-
ation between two people using the Jaccard coefficient and
pointwise mutual information. We then use group average

Table 6: Effect of aliases on relation detection

Method
real name only real name and top alias

P R F P R F

Jaccard .4902 .5229 .4527 .4999 .7748 .5302
PMI .4812 .7185 .4792 .4833 .9083 .5918

agglomerative clustering (GAAC) [30] to group the people
into four clusters. Initially, each person is assigned to a sep-
arate cluster. In subsequent iterations, group average ag-
glomerative clustering process, merges the two clusters with
the highest correlation. Correlation, Corr(Γ), between two
clusters X and Y is defined as

Corr(Γ) =
1

2

1

|Γ|(|Γ| − 1)

X

(u,v)∈Γ

sim(u, v). (4)

Here, Γ is the merger of the two clusters X and Y . |Γ|
denotes the number of elements (persons) in Γ and sim(u, v)
is the association between two persons u and v in Γ. We
used the Jaccard coefficient, which is calculated using page
counts as

Jaccard(u, v) =
hits(“u”AND“v”)

hits(“u”OR“v”)
,

and pointwise mutual information (section 4.2.2) to measure
the association between two persons u and v. We terminate
the GAAC process when exactly four clusters are formed.

Ideally, people who work in the same field should be clus-
tered into the same group. We used the B-CUBED metric
[5] to evaluate the clustering results. The B-CUBED eval-
uation metric was originally proposed for evaluating cross-
document coreference chains. We compute the precision,
recall and F -score for each name in the dataset and average
the results over the number of people in the dataset. For
each person p in our dataset, let us denote the cluster that p
belongs to as C(p). Moreover, we use A(p) to represent the
affiliation of person p, e.g. A(“Bill Clinton”) =“politics”.
Then we calculate the precision and recall for person p as

Precision(p) =
No. of people in C(p) with affiliation A(p)

No. of people in C(p)
,

Recall(p) =
No. of people in C(p) with affiliation A(p)

Total No. of people with affiliation A(p)
.

Then, the F -score of person p is defined as

F(p) =
2× Precision(p)× Recall(p)

Precision(p) + Recall(p)
.

The overall precision (P), recall (R) and F -score (F) are
computed by taking the averaged sum over all the names in
the dataset.

Precision =
1

N

X
p∈DataSet

Precision(p)

Recall =
1

N

X
p∈DataSet

Recall(p)

F−Score =
1

N

X
p∈DataSet

F(p)



Table 5: Aliases extracted using the proposed method
Real Name gold standard First Second Third
David Hasselhoff hoff, michael knight, michael hoff michael knight michael
Courteney Cox cece, lucy, dirt lucy, monica geller, monica dirt lucy lucy monica
Al Pacino sonny, alfredo james pacino, michael corleone michael corleone alfredo james pacino alphonse pacino
Teri Hatcher hatch, susan mayer, susan, lois lane, lois susan mayer susan mayer
Texas lone star state lone star state lone star lone
Vermont green mountain state green mountain state green green mountain
Wyoming equality state, cowboy state equality equality state cowboy state
Hideki Matsui Godzilla, nishikori, matsu hide Godzilla nishikori matsui

Here, DataSet is the set of 50 names selected from the En-
glish personal names dataset. Therefore, N = 50 in our
evaluations.

We first conduct the experiment only using real names (i.e.
u, v =“real name”) Next, we repeated the experiment by ex-
panding the query with the top ranking alias extracted by
the proposed algorithm (i.e. u, v =“real name” OR “alias”).
Experimental results are summarized in Table 6. From Ta-
ble 6, we can see that F-scores have increased as a result
of including aliases with real names in relation identifica-
tion. Moreover, the improvement is largely attributable to
the improvement in recall. In both Jaccard and PMI, the
inclusion of aliases has boosted recall by more than 20%.
By considering not only real names but also their aliases, it
is possible to discover relations that are unidentifiable solely
using real names.

6. DISCUSSION
The concepts of entities and relations are central to the

Semantic Web. However, uniquely identifying entities on the
web is made complicated by lexical and referential ambigu-
ities in entities. This study specifically examined referential
ambiguity of names. However, lexical and referential ambi-
guities are closely connected. For example, in the case of
extracting aliases for a personal name, the given name itself
might be ambiguous. If more than one entity is represented
by the name, then merely stating the real name does not en-
able us to identify the entity uniquely. In such situations, we
must first disambiguate the real name (i.e. resolve the lexical
ambiguity) before we attempt to extract aliases (i.e. resolve
referential ambiguity). On the other hand, two web pages
about the same individual might use different aliases of the
person’s real name. A namesake disambiguation system that
attempts to cluster these two pages together might require
the knowledge about aliases. Moreover, aliases themselves
can sometimes be ambiguous. For example, Godzilla, an
alias for Hideki Matsui is also a movie and an imaginary
monster. A single alias might be insufficient to identify an
entity on the web uniquely. In fact, during an error analysis,
we discovered that the phrase beer hunter was incorrectly ex-
tracted as an alias for Michael Jackson. However, Michael
Jackson has several namsakes on the web; one of whom was,
in fact, an expert on beer and introduces himself as the beer
hunter.

Consider the problem of detecting whether a particular re-
lation R holds between two entities A and B. One approach
to solve this problem is to find contexts in which A and B
co-occur and decide whether the relation R pertains between
the entities. For example, if A and B are two researchers,
then we can expect a high co-occurrence on the web if they

publish their mutual works together or work on the same
project. In fact, previous studies of social network extrac-
tion [31, 33] have considered co-occurrences on the web as a
measure of the social association among people. However, if
A and B have name aliases, then it is not possible to collect
all the contexts in which they co-occur merely by searching
using the real names. To illustrate this point, let us assume
the aliases of A and B to be a, b. Then there exists four
possible co-occurrences: (A,B), (A,b), (a, B) and (a,b). The
query which contains only real names, A AND B, covers
only one of the four outcomes. Moreover, the number of
possible combinations grows exponentially along with the
number of aliases for each entity. As seen from the relation
detection experiment in section 5.4, knowledge related to
aliases can improve a relation detection system by provid-
ing more accurate information related to the co-occurrences
of entities.

7. CONCLUSION
In this paper, we specifically addressed the problem of

extracting aliases of a given name from the web. We pro-
posed a lexical-pattern-based approach to represent the var-
ious ways in which names and aliases are introduced on the
web. Using a set of name-alias pairs, we proposed a method
to extract such lexical patterns automatically from snippets
returned by a web search engine. We then used the extracted
patterns to determine candidate aliases of a given name. We
proposed a word co-occurrence graph using anchor texts and
word association measures using page counts to evaluate the
confidance of an candidate alias for a name. Moreover, the
various ranking scores proposed in the paper were integrated
using ranking support vector machines to leverage a robust
ranking function. We evaluated the proposed method us-
ing both personal and place names. The proposed method
outperformed numerous baselines introduced in the paper
and previous work on alias extraction. Moreover, indepen-
dent evaluations on English and Japanese datasets suggest
the possibility of extending the proposed method to other
languages.
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