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Abstract

Recent development of location technologies en-
ables us to obtain the location history of users. This
paper proposes a new method to infer users’ long-
term properties from their respective location histo-
ries. Counting the instances of sensor detection for
every user, we can obtain a sensor-user matrix. Af-
ter generating features from the matrix, a machine
learning approach is taken to automatically classify
users into different categories for each user prop-
erty. Inspired by information retrieval research, the
problem to infer user properties is reduced to a text
categorization problem. We compare weightings
of several features and also propose sensor weight-
ing. Our algorithms are evaluated using experimen-
tal location data in an office environment.

1 Introduction
Context-aware computing are gaining increasing interest in
the AI and ubiquitous computing communities. To date, nu-
merous approaches have been taken to recognize and model
a user’s external context, for example one’s location, physi-
cal environment, and social environment, to provide context-
dependent information. Though “context” is a slippery no-
tion [Dourish, 2004], it is promising if we can recognize and
adapt to aspects of users such as their activities, general in-
terests, and current information needs [Jameson and Kruger,
2005]. Such user models are useful for personalized informa-
tion services in ubiquitous computing.

Recently, location information has become widely avail-
able both in commercial systems and research systems. De-
vices such as Wi-Fi, Bluetooth, low-cost radio-frequency tags
and associated RFID readers, and ultrasound devices all pro-
vide location-based information support in various situations
and environments. One early and famous project was Ac-
tive Badge [Want et al., 1992]. Since that work, numer-
ous studies of users’ activity recognition and location-aware
applications have been developed using location and other
sensory information in the context of ubiquitous and mobile
systems [Wilson, 2003; Hightower et al., 2005; Ashbrook
and Starner, 2003; Liao et al., 2005; Lester et al., 2005;
Wilson and Philipose, 2005]. In these studies, user mod-
els are sometimes implicitly assumed. For example, being

in a laboratory might imply working behavior for laboratory
members. While for different types of users such as guests
for a campus tour, being in a laboratory implies sightseeing
behavior. Therefore, user modeling and behavior detection
are mutually complementary: if we have a more precise user
model, we can guess more precisely the user behavior, and
vice versa. Automatically obtaining a user model will boot-
strap activity recognition in a ubiquitous environment to en-
able context-aware information services.

Toward user modeling for ubiquitous computing, several
studies have been done in recent years. Heckmann pro-
poses the concept of ubiquitous user modeling [Heckmann,
2005]. He proposes a general user model and context ontol-
ogy GUMO and a user model and context markup language
UserML that lay the foundation for inter-operability using Se-
mantic Web technology. Carmichael et al. proposes a user-
modeling representation to model people, places, and things
for ubiquitous computing, which supports different spatial
and temporal granularity [Camichael et al., 2005].

This paper describes an algorithm to infer a user’s long-
term properties such as gender, age, profession, and interests
from location information. The system automatically learns
patterns between users’ locations and user properties. Conse-
quently, the system can infer properties: it can automatically
produce a user model of a new user coming to the environ-
ment. We show that some properties are likely to be inferred
and others are difficult to infer. The algorithm is useful in
various ubiquitous computing environments to provide user
modeling for personalized information services.

We address users’ long-term properties, especially among
many user-modeling dimensions. Kobsa lists frequently
found services of user-modeling, some of which utilize users’
long-term characteristics such as knowledge, preference, and
abilities [Kobsa, 2001]. Jameson discusses how different
types of information about a user, ranging from current con-
text information to the user’s long-term properties, can con-
tribute simultaneously to user adaptive mechanisms [Jame-
son, 2001]. In the ontology GUMO, long-term user model di-
mensions are categorized as demographics such as age group
and gender, personality and characteristics, profession and
proficiency, or interests such as music or sports. Some are
basic and therefore domain independent, whereas others are
domain dependent.

Our algorithm is so simple that it is applicable to many



Figure 1: ID-CoBIT and sensors

types of location data. Inspired by research on information
retrieval, we regard the problem of inferring users’ proper-
ties as text categorization problems. Support vector machine
(SVM) is applied to the problem with various feature weight-
ing methods compared in the paper. Our study is evaluated on
empirical data obtained through one-week experiments at our
research institute. We collected location data of more than
200 users (staffs and guests). The ID-CoBIT system consist-
ing of namecard-type infrared transmitters and sensors is in-
stalled in the environment to recognize users’ location.

The paper is organized as follows. The next section intro-
duces the ID-CoBIT system and describes location data. The
proposed algorithm for user modeling from location informa-
tion is explained in Section 3. Analyses of the results are
made in Section 4. We also propose measurements of sensor
importance in Section 5. Related works and discussion are
described in Section 6. Finally, we conclude the paper.

2 Location information
In our research, location information is obtained using the
CoBIT system. This section briefly overviews the ID-CoBIT
system and describes experiments to collect location data.

2.1 ID-CoBIT
The Compact Battery-less Information Terminal (CoBIT ) is
a compact information terminal that can operate without bat-
teries because it utilizes energy from the information carrier
[Nishimura et al., 2004]. The ID-CoBIT is a terminal inte-
grating CoBIT with an infrared (IR) ID tag and a liquid crys-
tal (LC) shutter. Figure 1(a) depicts an ID-CoBIT, which is
useful as a namecard holder. The ID detector for ID-CoBIT
is a single detector type IR sensor, as shown in Fig. 1(b). The
sending cycle of a tag is about 3 s. The effective distance is
3–5 m. Detailed specifications are available in [Nakamura et
al., 2003].

The ID-CoBIT system provides location-based informa-
tion support in the environment such as exhibitions, mu-
seums, and academic conferences [Nishimura et al., 2004]
Users can download information depending on their location
and orientation, mainly via voice information. The entire ar-
chitecture is shown in Fig. 2. Although the ID-CoBIT system
has multiple communication channels, in this study we use
only the IR LED on an ID-CoBIT and IR sensors in the envi-
ronment. We specifically address obtaining locations of users
without disturbing usual daily behavior.

Figure 2: ID-CoBIT system.

Figure 3: Sensor allocation map for a part of the fourth floor.

2.2 Experiments

The ID-CoBIT system is installed in an office environment of
our research institute. Location data were collected at AIST
Tokyo Waterfront Research Center, from February 16, 2004
(Mon) through February 20 (Fri). In all, 94 sensors are in-
stalled at the first floor and the fourth floor. On the first floor,
we have entrances, reception areas, lobbies, and lounges. The
fourth floor is our main office, consisting of a research area
and an administrative area. The sensor allocation map on the
fourth floor is shown partly in Fig. 3, which is about 1000
square meters, or about a third of the entire covered area. Ev-
ery working staff member on these floors was delivered an
ID-CoBIT, which they continued to wear during the period.

We also delivered ID-CoBITs to and obtained location in-
formation of 170 guests who visited the institute temporarily
during the period.

After the experiments, we analyzed the location data. The
detection instances of all sensors were 24317 times: 20273
times of staff, 4044 times of guests. The number was almost
constant each day. On average, a staff member was detected
431.3 times; a guest was detected 23.8 times. Because the
location information and user properties of staffs are quanti-
tatively and qualitatively better than those of guests, we use
the staff information in this paper.

For obtaining users’ long-term properties, we manually
surveyed user attributes for all staff such as age, work fre-
quency, room, and whether they smoke or not. The user
properties used in our study are shown in Table 1. We
chose demographic properties such as AGE and POSITION,
domain-dependent properties such as TEAM and WORK-
FREQUENCY, and user-specific properties such as COF-
FEE and SMOKING.

We elaborate these properties considering usefulness in our
domain and also versatility in other domains: First, AGE and



Table 1: User properties.
user property range
AGE under24, 24-29, 30-34, 35-39,

over40
POSITION sc∗, full-time researcher,

part-time researcher :
technical-staff, temporary-staff

TEAM research-group-A, -B, -C, -D,
secretaries, administrators

WORK-
FREQUENCY∗∗

high, middle, low

COFFEE∗∗∗ high, middle, low
SMOKING yes, no
ROOM+ A, B, C, D, E, F
COMMUTING++ station-A, station-B

∗ SC stands for steering committee. ∗∗ Because of the free time
system of this work environment, working time and commuting fre-
quency depend on the person. ∗∗∗ How often one drinks coffee. +

Working room at one’s desk. ++ Two train stations on two lines are
accessible from this Institute.

POSITION are important properties especially in Japan; in
the Japanese culture, age and position make large differences
in communication such as using respect language and behav-
ior. As it is often inappropriate and impolite to ask a user
about the age and position directly, it is useful for the system
to infer such properties. TEAM and WORK-FREQUENCY
can be seen as users’ interests in the research domain. Be-
cause team organization is flexible in our institute, they re-
flect well the reseracher’s interest. COFFEE and SMOK-
ING are useful for guests. If the system can recognize that
a guest likes coffee or smoking, it can suggest appropriate
restaurants or cafes in break time. Because we are often
asked “do you like coffee or tea?” or “do you smoke or not?”
(in Japan), it indicates the usefulness of the properties in our
daily lives. Lastly, ROOM and COMMUTING are for navi-
gation. Knowing the properties, the system can infer in which
room a researcher might be (even if he does not wear the Co-
BIT), or recognize whether he/she goes home or not.

3 Inference of User Properties
In this section, we propose our algorithm to infer user prop-
erties based on their respective location histories. We first
describe how to reduce the prediction problem of user prop-
erties into a text categorization problem. Then, the feature
design for machine learning is explained.

3.1 Reduction to a Text Categorization Problem
When a sensor detects a user, the SensorID and UserID are
obtained each time a sensor detects a user. Counting the num-
ber of detections, we can build a matrix that represents how
many times each sensor detects each user. We call it a sensor-
user matrix. Denoting the number of users as n and the num-
ber of sensors as m, the sensor-user matrix is an n×m matrix
W . We denote Wij as the element of W , i.e., the number of
detections of user uj by sensor si. The illustration of sensor
detection to a sensor-user matrix is shown in Fig. 4.

Next, we consider user properties. For example, a user
property of whether the user drinks coffee or not (the COF-

Figure 4: Illustration of sensor detection and the sensor-user
matrix.

FEE property) can be represented as {yes, no} or {1,0}. As-
suming that three users have the values yes, no, and yes for
the property, we have the following table as a training set.

u1

u2

u3

s1 s2 s3 s4 COFFEE
1 2 2 4 1
1 0 2 0 0
3 2 0 0 1

Then, when a new user u4 comes and the detection fre-
quencies are observed, a prediction problem arises. Is the
COFFEE property of the user 1 or 0?

s1 s2 s3 s4 COFFEE
u4 2 2 0 0 ?

From the training set, classification can be learned using
machine-learning techniques. If we take nearest neighbor
method, the most similar one to u4 seems to be u3 (though
it depends on the similarity measure). Therefore, the method
outputs 1.

This approach is justified using the following example: Let
us consider a situation in which sensor s2 is installed in front
of a coffee server. Then, frequent detection by s2 means that
the user comes frequently to the coffee server, which might
imply that the user likes coffee. We cannot know in advance
which sensors are important for classification; they might be
those in front of a coffee server, the ones in front of a vending
machine, or those that are completely unexpected. In any
case, classification is learned through sensor detection data
and the performance is evaluated by k-cross validation or the
leave-one-out method, where each part of the training data is
used repeatedly as both initial training data and test data.

The obtained problem closely resembles a text categoriza-
tion problem. A document is often represented by a word vec-
tor (or a bag of words) in which each word in the document
is weighted by some word weighting; all structure and linear
ordering of words in the document are ignored. The term-
document matrix (or a document-by-word matrix [Manning



and Schütze, 2002]) resembles our sensor-user matrix W in
that we have n documents and m words in which each user
corresponds to a document and each sensor corresponds to a
word. In a text categorization task, categories are annotated
to each document, which can be considered as user properties
in our problem. The classification is learned and used to infer
the category based on the word vectors. Therefore, the user-
modeling problem from location information is reduced to a
(multi-label) text categorization problem under the proper as-
sumptions and simplifications.

Text categorization is typically attained using several clas-
sification techniques. We employ support vector machine
(SVM) as a learner, which creates a hyperplane that separates
the data into two classes with the maximum-margin [Vapnik,
1995]. The SVMs offer two important advantages for text
categorization: term selection is often unnecessary because
SVMs tend to be fairly robust to overfitting. In addition, there
is a theoretically motivated, “default” choice of parameter set-
ting [Joachims, 1998]. These benefits are also provided by
our user-modeling problem.

3.2 Feature Design
In the context of text categorization, tf-idf is frequently used
as feature weighting, which encodes the intuition that (i) the
more often a word occurs in a document, the more it is rep-
resentative of its content, and (ii) the more documents in the
word occurs in, the less discriminating it is. In our studies, it
is rephrased as follows: (i) the more often a sensor detects a
user, the more it is representative of the user’s characteristics,
and (ii) the more users a sensor detects, the less discriminat-
ing it is.

The tf-idf weighting function tailored to our case is defined
as tfidf(si, uj) = freq(si, uj)×idf(si) where freq(si, uj)
is the number of detections of users uj by sensor si. The
idf(sj) is defined as idf(si) = log(n/uf(si)) where uf(si)
is the number of users that sensor si detects (corresponding
to document frequency). A sensor that detects many users
has high uf(si) value, and therefore a low idf(si) value. In
an extreme case, a sensor detecting all n users has a zero idf
value as log(n/n) = 0.

Aside from tf-idf weighting, several ways of feature
weighting are possible. We compare typical weighting meth-
ods that are often used and compared in information retrieval.
The following is a list of feature weighting methods that we
use:
• Frequency (number of detections): wij = freq(si, uj)

• Binary: wij =
{

1 if freq(si, uj) > fthre

0 otherwise where

fthre is a threshold. In this paper, we determine fthre =
1 through preliminary experiments.

• IDF: wij =
{

idf(si) if freq(si, uj) > fthre

0 otherwise

• TFIDF: wij = tfidf(si, uj)
For the weights to fall in the [0,1] interval and for the

vectors to be of equal length, the weight can be normal-
ized by cosine normalization, given as wnormalized

ij =
wij/

√∑m
i=1(wij)2.

Table 2: Classification performance depending on various
feature weighting

F-value(%) Recall(%) Precision(%)
FREQ 44.45 73.56 37.75

BINARY 43.92 65.83 41.62
TFIDF 44.28 71.62 37.38

IDF 44.37 68.45 45.33
N-FREQ 54.46 68.83 49.23

N-BINARY 40.73 63.80 40.97
N-IDF 41.23 61.02 41.46

N-TFIDF 53.00 65.50 47.88

Therefore, we have 4×2 feature weighting methods, which
are compared in the next section. We call those: FREQ,
BINARY, IDF, TFIDF, N-FREQ, N-BINARY, N-IDF, and N-
TFIDF. Although normalized tf-idf (N-TFIDF) is known to
perform well for text categorization, different results are re-
vealed in our user-modeling problem.

4 Evaluation
For each user property shown in Table 1, a categorization
problem is generated. More exactly, because SVM is fun-
damentally applicable to the two-classes problem, a problem
is generated for each value of the property. For example, the
AGE property can take five values: five classification prob-
lems are generated. We make positive and negative classes
for each value, say under24, i.e., those who are under 24
and those who are not. Thus the obtained classifier will clas-
sify people into those who are under 24 and those who are
not. The SVM is used to learn the categorization and the per-
formance is evaluated by leave-one-out. We employ a radius
basis function (RBF) kernel, which performs well in our pre-
liminary experiments. 1

Average performances on all categorization problems are
shown in Table 2. For example, if we use FREQ as a feature
weighting, the recall is 73.56%, meaning that we can detect
73.56% of persons with a property having a certain value. As
a baseline, we investigate the performance of the straightfor-
ward classifier that always outputs positive; F-value is 38.2%
and precision is 23.93%. Thus our method is much better than
the baseline. As for feature weighting, N-FREQ has the high-
est F-value, and N-TFIDF is the second best. Normalization
seems to function effectively for either feature weighting: it
might alleviate the difference of detection frequency among
users that was caused by the difference on the working time
or individual device/usage characteristics. Depending on fea-
ture weighting, the performance varies as much as 10 points,
thereby emphasizing the importance of feature weighting for
user modeling.

In text categorization, normalized tf-idf works well and
normalized frequency does not compete [Joachims, 1998]. In
our case, N-TFIDF performs well, but N-FREQ performs the
best. Thus the result is not completely identical to those in the
text categorization literature. The reason can be considered as
follows: compared to documents that have many functional

1Other kernels, such as linear and polynomial kernels, produce
similar results overall; the results worsen by a few points.



words and popular words with less information, location data
suffers less from such a problem. Therefore, a naive approach
using a normalized frequency might work well.

Generally, recall is about 70% and precision is less than
50%. However, we have much better results for a particular
set of user properties. For SMOKING, ROOM and COM-
MUTING, the F-values are as high as 64.13%, 67.00%, and
61.86% respectively with about 60-90% recall and 50-80%
precision. The under24 and over40 values of AGE, most
values of TEAM, and high value of COFFEE are all more
than 10 points greater than the baseline. Some of them has
more than F-values of 80% with 70-100% recall and 50-80%
precision.

In summary, some user properties, such as TEAM and
ROOM, can be predicted effectively using solely loca-
tion information. To some degree, AGE, COFFEE, and
SMOKING are also predictable. POSITION and WORK-
FREQUENCY are difficult to predict.

We investigated feature weights from the learned models
and found that some sensors are unexpectedly important; if
we take COFFEE property for example, the ones around a
coffee server are of the fifth and ninth importance among
all sensors. The most important one was that in front of a
small table where people gather for break. Some corridors are
also recognized as important. Surprisingly a sensor exactly in
front of the coffee server was slightly negatively weighted; it
may be because around the sensor there is a copy machine and
a door, thus the detection has little information for the prop-
erty. These results show the limitation of our presumption for
user behaviors and effectiveness of our approach.

5 Sensor Weighting
In actual use-cases, it is not always possible to prepare train-
ing data consisting of users’ location histories and user prop-
erties. Then, the question arises: is there a way to find out
whether a sensor is useful for future user modeling in ad-
vance without training data? In the real world situation, we
often change sensor locations depending on actual user be-
haviors. Therefore it is useful if we can know the importance
of sensors for future user modeling so that we can properly
choose sensors to fix locations. This section describes an ap-
proach to measure the usefulness of sensors using only loca-
tion histories. It is similar to keyword extraction for indexing
documents for future retrieval.

5.1 Importance of Sensors
A sensor that does not detect users at all is almost useless, at
least for user modeling purposes. Therefore, one definition to
measure the usefulness, or the importance, of a sensor is sim-
ply the total number of detections: its frequency of detection.
Alternatively, sensors that detect many different users might
be important.

The importance of a sensor is understood as follows: The
user-modeling performance becomes better than the other
sets of sensors if we have a set of more ”important” sensors.
In the context of information retrieval, several studies have
examined finding good indexing terms for document catego-
rization. Better indexing terms improve categorization per-
formance [Mladenic et al., 2004].
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Figure 5: Number of enabled sensors versus F-value.

We compare several importance measures for a sensor de-
rived from text categorization studies. The importance of
sensor si is defined as follows: (i) Overall frequency (TO-
TALFREQ): w(si) =

∑n
j=1 freq(si, uj) (ii) Total detected

users (TOTALUSER): w(si) = uf(si) (iii) Total Tf-idf sum
(TFIDFSUM): w(si) =

∑n
j=1 tfidf(si, uj) These functions

can be normalized and taking a summation over every user,
denoted as N-TOTALFREQ, N-TOTALUSER, N-TFIDFSUM.

In addition, we use another importance measure, called
weighted frequency (W-TOTALFREQ), following the intu-
ition that a sensor that detects users who are detected by
fewer sensors might be more important, as (iv) Weighted fre-
quency (W-TOTALFREQ): w(si) =

∑n
j=1 freq(si, uj) ×

log(m/sf(uj)), where sf(uj) represents the number of sen-
sors that detect uj . This can be regarded as a tf-idf measure
on the transposed sensor-user matrix. In summary, we have
seven sensor importance measures.

5.2 Comparison and Results
Assume that we tentatively disable all sensors and enable
them one by one in decreasing order of sensor importance.
Eventually all sensors are enabled and the results will coin-
cide in any case. However, if a sensor weighting method is
superior to the others, the performance will improve faster.
If sensor weighting is poor, the performance grows no faster
than random selection of sensors does. This approach to eval-
uate feature selection is found in text categorization research
[Joachims, 1998; Mladenic et al., 2004].

Figure 5 shows how the categorization performance
changes over the number of enabled sensors. We used N-
FREQ for feature frequency, and we used user properties
that are shown to be predictable as shown in Section 4. In
the figure, the undermost line (RANDOM) is plotted by se-
lecting sensors randomly: it is shown as a baseline. The
best performance is obtained by W-TOTALFREQ and TOTAL-
FREQ. Other methods such as TOTALUSER, TFIDFSUM, and
normalized series (N-TOTALFREQ, N-TOTALUSER, and N-
TFIDFSUM) are better than RANDOM, but not as much as the
best two.

Sensor weighting is beneficial in several situations: we can



identify which sensors might contribute to user modeling be-
fore learning the user properties. We can move sensors with
low importance to elsewhere. These configurations of sensor
allocation yield better performance during future user model-
ing.

6 Related Works and Discussion
Hightower distinguishes symbolic location systems and
physical positioning technologies [Hightower and Borriello,
2001]. Our algorithm is applicable to symbolic location data.
Therefore, some preprocessing is necessary for physical posi-
tioning data. For that purpose, studies to cluster position data
into significant locations [Ashbrook and Starner, 2003] are
useful. Anonymous sensors are applicable to our approach if
they are used with ID-sensors, as proposed in [Schulz et al.,
2003].

We discard timestamps of sensor detection. We are aware
that this is a crucial abstraction. Nevertheless, we persisted in
our approach for two reasons: First, there are numerous alter-
natives for converting timestamped sensory data into features.
Tailored heuristic rules might improve the results, but we
want to retain simplicity in our algorithm to protect its general
applicability to many location data and many domains. Sec-
ond, our algorithm is mainly inspired by works in information
retrieval. We discard the ordering of sensor detections so that
correspondence of the data structures is maximized. Consid-
ering that we would have increasing amount of location data
in the real world, simplicity and scalability of information re-
trieval methods are of great use. For example, in Japan people
use RFID cards when taking trains and shopping; almost ev-
ery cell phone has GPS and broad band communication. In
this environment, a vast amount of user location data is poten-
tially available, which needs simple and scalable processing.
However, we do not disregard the usability of timestamps;
actually they have much information and can be used to im-
prove our results. Our contribution in this paper is to show a
bridge between techniques in information retrieval and ubiq-
uitous computing.

Our algorithm can infer user properties if given location
data history. A promising application domain of our algo-
rithm is event spaces [Nishimura et al., 2004] such as con-
ferences and business showcases, and large-scale shopping
malls. Frequently, data mining of sales data is conducted us-
ing user demographic properties, which can be inferred by
location data.

7 Conclusion
This paper proposes a new method to infer long-term user
properties from a user’s location history. Only the detection
frequency is used. Machine learning techniques are applied to
learn the pattern. Some user properties are well predictable.
We also propose sensor weighting, which enables better allo-
cation of sensors for future uses of modeling.

The algorithms in this paper are inspired by information
retrieval. Because of the (proposed) structural similarity be-
tween sensor-user matrix and term-document matrix, we con-
sider that many information retrieval techniques are applica-
ble to sensory data. User modeling in ubiquitous computing

research will contribute greatly in AI studies for modeling
and recognizing human behaviors.
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